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SUMMARY

In this paper we present a method for the simulation of incompressible as well as compressible unsteady
�ows. At �rst we discuss three di�erent forms, i.e. a primitive-, conservative- and a semi-conservative
form of the governing equations. We use a semi-implicit time integration in such a fashion that the
stability is guaranteed independently of the speed of sound and the resulting method is independent
of the Mach number range. Moreover, with the application of the so-called multiple pressure variables
(MPV) approach the di�culties with the pressure term can be circumvented as in the incompressible
limit the hydrodynamic pressure decouples from the equation of state. Increasing approximation errors
in the low Mach number regime are avoided. As a result, the proposed algorithm can also simulate
incompressible �ows as limit for zero Mach number. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

From the historical point of view of computational �uid dynamics our algorithm for com-
pressible and incompressible unsteady �ows belongs to the so-called pressure methods. The
classical projection method of Chorin [1] and the SIMPLE method of Patankar and Spald-
ing [2], which were developed originally for incompressible �ows, represent this class of
methods. The extension of this approach for subsonic �ows was �rst introduced by Casulli
and Greenspan [3]. Their scheme uses the primitive form of the Navier–Stokes equations and
is based on a space-staggered mesh. Only the terms which are related to the speed of sound
are discretized implicitly. As a result, this method is unconditionally stable with respect to
the CFL-condition for the speed of sound. This is too restrictive in the low Mach number
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regime for fully explicit methods, since the acoustic speed in this regime is much faster than
the velocity of the �ow.
Subsequently a similar approach in a conservative form called barely implicit correction

for �ux-corrected transport (BIC-FCT) algorithm was developed by Patnaik et al. [4]. They
constructed a two stage algorithm using collocated variables. The �rst stage is an explicit
predictor, which is implemented with positivity-preserving monotone FCT methods for the
convective terms in order to calculate strong gradients or shock waves accurately. As an
implicit corrector in the second stage the pressure correction equation, resulting from the
coupling of the implicit terms in the momentum- and energy equation, is solved. Certainly
this scheme produced better results for moderate and high Mach number �ows. Recently
a mixed form, in which a non-conservative form is used only for the energy equation, was
introduced by Bijl and Wesseling [5] to achieve more e�ciency in the pressure correction time
stepping scheme. Hereafter we call it a semi-conservative form. For the temporal integration
Wesseling et al. [6] applied Runge–Kutta time stepping schemes for the explicit convective
terms. They solved the implicit pressure correction equation only once at each time step. van
der Heul et al. [7] reformulated their scheme for the application to the conservation equations.
When the Mach number tends to zero, the compressible equations converge to their in-

compressible counterpart. The pressure waves become in�nitely fast with respect to the �uid
velocity and a sudden pressure equalization takes place. Hence, local gradients in the ve-
locity �eld cannot generate large pressure gradients. Subsequently no large density gradient
can occur. This incompressible limit is mathematically a rather subtle one, because the equa-
tions change their type: In the inviscid case from pure hyperbolic compressible equations to
hyperbolic–elliptic due to the in�nite propagation rates of the pressure waves. Using an asymp-
totic analysis the incompressible limit of a compressible �ow has been considered by Klainer-
man and Majda [8, 9] for the isentropic case. Later Klein [10] extended the formal asymptotic
considerations to the non-isentropic case. Based on these asymptotic considerations Munz
et al. [11] proposed the multiple pressure variables (MPV) scheme for the low Mach number
regime as extension of incompressible pressure correction methods. This scheme mimics the
low Mach number limit behaviour in such a way that the numerical scheme survives this
limit and coincide for M =0 with a standard incompressible pressure correction method. The
MPV scheme in Reference [11] has been formulated in primitive variables with application
to the low Mach number regime. For the time-integration they used the Strang-splitting [12]
method, that is only of �rst-order in time for the incompressible limit case.
In this paper we extend the multiple pressure variable idea as proposed in Reference [11]

into two directions. First, it is shown that this approach may be applied to various forms
of the basic equations of compressible �uid �ow. In the low Mach number regime all the
numerical schemes produce quite similar results. But, in the fully compressible regime the
numerical results clearly show that shock waves are captured well, if the scheme is applied
to the equations in conservation form. The combination of multiple pressure variables and
conservative form establishes a numerical scheme that may be applied to �uid �ow at all
Mach numbers. The proposed version of the MPV approach may especially be applied to
problems where in one region compressible and in another weakly compressible or even
incompressible �uid �ow occur. Because the �rst-order time approximation behaves well only
for the simulation of steady problems, the method is extended to second-order accuracy in time
to obtain the e�cient solution of unsteady problems too. This second-order time-integration
methods preserves the main structure of the MPV-method.
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The outline of the paper is as follows. In Section 2 we introduce the dimensionless
basic equations in three di�erent forms with the application of the MPV ansatz, discuss
their properties in the incompressible limit case and the methodology used. In Section 3 the
semi-implicit time-integration is presented for the conservative form, whose stability condi-
tion is independent of Mach number. We explain brie�y the spatial discretization in Section
4 and the high-order semi-implicit time-integration in Section 5. In Section 6 we show by
numerical experiments, that only the conservative MPV fractional step method can solve high
Mach number �ows correctly, whereas for the low Mach number case the solutions obtained
by all three forms of the basic equations converge to the correct solution and their solutions
show nearly the same qualities. For these cases we also present the convergence rate of the
high-order time-integration methods. The paper is closed by the conclusions.

2. GOVERNING EQUATIONS AND METHODOLOGY

2.1. Governing equations

The conservation equations for density %, momentum per unit volume %u, and total energy
per unit volume e in the compressible gas dynamics without consideration of viscosity and
heat addition are

@%
@t
+∇ · (%u) = 0

@(%u)
@t

+∇ · [(%u) ◦ u] +∇p=0 (1)

@e
@t
+∇ · [(e+ p)u] = 0

where the total energy density is

e= %�+ 1
2%(u · u)

The equation of state relating the pressure to both the density and the speci�c internal energy
�, for an ideal gas, is taken to be

p=(�− 1)%�

Using the following non-dimensional variables:

%′=
%
%0
; u′=

u
|u0| ; p′=

p
p0
; x′=

x
x0
; t′=

t|u0|
x0

where the subscript (·)0 denotes the reference values and the superscript (·)′ indicates the
quantities without dimension, a non-dimensionalized form of the equations is obtained

@%′

@t′
+∇ · (%′u′) = 0
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@(%′u′)
@t′

+∇ · [(%′u′) ◦ u′] +
1
M 2∇p′ =0

@
@t′

[
p′ + (�− 1)M 2 %

′(u′ · u′)
2

]
+∇ ·

{[
�p′ + (�− 1)M 2 %

′(u′ · u′)
2

]
u′

}
= 0 (2)

Here, M represents the global Mach number

M =
|u0|√
p0=%0

=
|u0|
c0

(3)

which is a measure for the compressibility e�ect in the �ow �eld. We de�ned the reference
value of the sound velocity to be

√
p0=%0 and avoided the factor � to simplify the asymptotic

considerations later. In the energy equation the total energy is splitted according to the energy
relation and the equation of state that reads in the non-dimensionalized form as

e= %�+M 2 1
2
%(u · u)= p

�− 1 +M
2 1
2
%(u · u)

This form of the energy equation we will use within the numerical framework.
We note, that the global Mach number M appears in the equations, because we choose

di�erent characteristic values for the �ow velocity u and sound speed c. This is necessary,
because in the low Mach number regime the scales of the �uid and sound velocity spread.
We emphasize that M is a global parameter characterizing the compressibility of the �ow,
while Mloc denotes the local �ow Mach number.
The incompressible limit is obtained when the Mach number M tends to zero. The term

1=M 2 before the pressure gradient in the momentum equation shows the singular behaviour
of this limit. The maximal speed of the wave propagation in the non-dimensional equations
amounts

�′
max = |u′|+ c′

M
(4)

Hence, in the limit (M → 0) the pressure waves get an in�nite propagation rate and the
compressible equations converge towards their incompressible counterparts. Within this limit
the term ∇=M 2 has to be bounded. Insight into this mathematical and physical limit behaviour
gives an asymptotic analysis shortly reviewed in the next subsection. From now on we omit
the superscript (·)′ in the non-dimensional equations.
If the solutions are continuously di�erentiable, the energy equation may be reformulated

into a pressure equation

pt + u · ∇p+ �p∇ · u=0 (5)

by the use of the mass and momentum equations.

2.2. Methodology

In the following we shortly review the asymptotic results of Klainerman and Majda [8] and
Klein [10] to motivate our numerical approach. These authors proposed an asymptotic expan-
sion for the physical variables in powers of the Mach number

w=w(0) +Mw(1) +M 2w(2) + · · · with w=(%; u; p) (6)
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The asymptotic expansions are substituted into the non-dimensionalized equations. As usual
the terms with the same powers of the Mach number are gathered and are separately set
to zero. In the non-dimensionalized equations the gradient of the pressure is divided by the
square of the Mach number. Hence, from the two leading order asymptotic equations of the
velocity equation follows that the pressure gradient for the leading order terms p(0) and p(1)

have to be zero as the Mach number tends to zero. The physical interpretation is the following.
Due to the fact that the pressure waves become very fast, a sudden pressure equalization will
take place. The result is that a local change in the velocity �eld cannot generate a strong
pressure gradient and hence, the density does not change any more. The pressure becomes
nearly constant, and splits into two main parts

p=p(0) +M 2p(2) +O(M 2) (7)

where both terms p(0) and p(2) survive the M =0 limit and in�uence the leading order
velocity term. The �rst-order pressure term p(1) is combined with the leading order term
p(0) and named p(0) for simplicity, because it satis�es the same conditions, e.g. is constant
in space. Because p(0) satis�es the equation of state it may be called the thermodynamic
pressure that describes global background e�ects.
The time dependency of the pressure term p(0) is given from the leading order pressure

Equation (5) that reads as

p(0)t + �p(0)∇ · u(0) = 0 (8)

Here we used that the gradient of the thermodynamic pressure term is constant in space.
Hence, the evolution equation for the background pressure is

−dp
(0)

dt
= − �p(0)∇ · u (9)

The spatial averaging of the pressure equation (8) over the entire computational domain and
applying the Gauss theorem leads to

dp(0)

dt
= − �p(0)

|�|
∫
@�
(u · n) dA (10)

where n denotes the unit normal vector directed outward on the boundary @�. This describes
physically a global pressure change due to compression at the boundary. As a result we get
the following divergence condition for the M =0 limit:

∇ · u= 1
|�|

∫
@�
(u · n) dA (11)

It is obvious, that the classical divergence-free condition of velocity (∇ · u=0) for incom-
pressible �ow can be retained, if no outer compression is active. Therefore, Equation (9) may
be interpreted as a generalized divergence constraint in the M =0 case, if outer compres-
sion occurs. Note that our divergence-free condition of velocity for incompressible �ows in
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this case does not result from the continuity equation, but from the pressure equation. The
continuity equation reduces in this case simply to the transport equation for the density and
becomes trivial, if the density is constant in space.
If we look for numerical methods that survive the limit M =0, the discretized equations

should converge to the corresponding limit equations. Within the concept proposed we do not
mean simply isochoric �ow, but the �ow of a compressible medium with in�nite speed of
sound. Hence, the numerical scheme may also be used to simulate zero Mach number variable
density �ows. Additionally, compression from the boundary are allowed, because the boundary
conditions have not satis�ed the incompressibility constraint. The limit equations for M =0
consists of the leading order mass equation, the leading order pressure equation (11) and the
zeroth order momentum equation. The variables involved in the limit equations are %(0), u(0)

and p(2). The second-order term p(2) acts as a balance-of-forces agent, which guarantees that
the velocity satis�es the divergence constraint (11) for the velocity at M =0. Motivated by
these asymptotic considerations Klein [10] denoted p(0) the thermodynamic pressure and p(2)

the hydrodynamic pressure. More details on the asymptotic analysis and its physical meaning
can be found in Reference [13].
In our construction of the numerical scheme we try to conserve this limit behaviour within

the numerical framework. We introduce a splitting of the pressure according to (7) neglecting
the higher order terms:

p=p(0) +M 2p(2) (12)

These multiple pressure variables are introduced into the equations of compressible �uid �ow.
They may be written in the following di�erent forms:
Conservative form:

@%
@t
+∇ · (%u) = 0

@(%u)
@t

+∇ · [(%u) ◦ u] =−∇ · (p(2)I) (13)

M 2 @p
(2)

@t
+∇ · (�pu) =−dp

(0)

dt
− (�− 1)M 2

[
@ek
@t
+∇ · (eku)

]

Semi-conservative form:

@%
@t
+∇ · (%u) = 0

@(%u)
@t

+∇ · [(%u) ◦ u] =−∇p(2) (14)

M 2 @p
(2)

@t
+∇ · (pu) + (�− 1)p∇ · u=−dp

(0)

dt
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Primitive form:

@%
@t
+ u · ∇%=−%∇ · u

@u
@t
+ u · ∇u=−∇p(2)

%

M 2 @p
(2)

@t
+ u · ∇p=−�p∇ · u − dp(0)

dt

(15)

Here, ek is an abbreviation for the kinetic energy 1
2%(u · u).

The aim of this reformulation of the equations is following. When the Mach number tends
to zero, then all the three formulations converge formally to their incompressible counterparts.
The terms multiplied by M 2 tends to zero and p tends to p(0) constant in space. If there is
no compression from the boundary, the time derivative of p(0) becomes zero. The energy or
pressure equation produces the divergence-free constraint for the �uid velocity. This refor-
mulation of the non-dimensional equations gives the chance to construct a numerical method
that formally converge to a method for the incompressible equations, when the Mach number
tends to zero. On the other hand, the introduction of the multiple pressure variables does
not change the equations. As long as the consistency relation (12) is valid the system with
and without pressure splitting is equivalent for any positive Mach number. The introduction
of multiple pressure variables is motivated by the low Mach number asymptotics and makes
no sense for large Mach numbers. But, we did not introduce any approximation at that time
and the equations are valid uniformly in M . We note that the di�erent formulations of the
compressible equations are equivalent only, if the solution is continuously di�erentiable.
In the numerical approximation we de�ne initially the leading order pressure p(0) as average

of p over the entire computational domain �

p(0)(t)=
1

|�|
∫
�
p d� (16)

The time development of p(0) is calculated from Equation (10).
Within the numerical method proposed the pressure term p(2) is used as a primary vari-

able. The pressure p is then obtained from Equation (12). The advantage is given within
the low Mach number regime. The pressure p(2) converges formally to the hydrodynamic
pressure satisfying the incompressible equations, while the pressure p becomes identical to
the thermodynamic pressure p(0), if the Mach number tends to zero.
The construction principles for the numerical scheme are now the following. The sti�ness

of the equations for small Mach numbers is met by an implicit approximation, especially of
those terms associated with the pressure waves. The other problem is the accuracy problem.
Solving the equations for the pressure term p means that in the low Mach number regime
the changes O(M 2) have to been captured. This will introduce di�culties with respect to
the accuracy and the increase of rounding errors. The direct solution of the pressure term
p(2) instead of the p solves this accuracy problem. Having found p(2) this term is multiplied
by M 2 and added according to (12). A similar rescaling for small Mach numbers has been
introduced by Bijl and Wesseling [5]. They also de�ne a hydrodynamic pressure term by
subtracting a background pressure from the pressure term in the compressible equations and
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introduce proper rescaling. The MPV approach makes the structure more obvious. In this
approach the thermodynamic pressure is a solution of the equations itself. Hence, we can
include variations of the thermodynamic pressure. We will outline these extensions to �uid
�ow with heat addition in the conclusions.

3. SEMI-IMPLICIT TEMPORAL DISCRETIZATION

For the fully explicit treatment of the above equations for M �=0 the stability of the numerical
scheme can be guaranteed only under the following so-called CFL-condition:

�t6�min
i

[
�x

|u|+ (c=M)
]
i

(17)

where � ¡ 1 is the so-called Courant number. This is often too restrictive for low Mach
number �ows. Casulli and Greenspan [3] have analysed the characteristic equations of the
primitive system (15) and recognized that the speed of sound arises from the terms on the
right-hand side of the velocity and the pressure equation. Hence, they discretized these deriva-
tive terms implicitly to obtain a numerical method being stable independently of the speed
of sound and the global Mach number. We employ a similar semi-implicit method for the
time-integration of the basic equations (13)–(15). Because all the convection terms will be
treated explicitly we have a CFL-condition involving the �uid velocity

�t6�min
i

[
�x
|u|

]
i

(18)

For the approximation of unsteady solutions this is usually a natural condition for the accurate
resolution of the problem.
In the following we apply �rst a discretization in time only. In this semi-discretization or

method of lines approach the spatial derivatives in the governing equations are approximated
by a spatial discretization method in the �rst step. From this a system of �rst-order ordinary
di�erential equations is obtained. As an example we apply such an additive semi-implicit
time-integration to the non-dimensional conservative equations (13)⎛⎝ %

%u
M 2p(2) + (�− 1)M 2ek

⎞⎠
t

+ ∇̃ ·
⎛⎝ %u

(%u) ◦ u
(�− 1)M 2eku

⎞⎠
ex

+ ∇̃ ·
⎛⎝ 0
p(2)I
�pu

⎞⎠
im

=

⎛⎝ 0
0

−p(0)t

⎞⎠ (19)

where ∇̃ means a �nite di�erence operator in space. The subscript ‘ex’ and ‘im’ denote terms
that are proposed to be approximated in an explicit or an implicit fashion, respectively. Here,
we treat explicitly all the terms, which have no relation with the fast propagating pressure
waves. The Jacobian matrix of the ex-�ux has only the eigenvalues u in one space dimension.
We use the conservative form as the basic system of equations, but use the hydrodynamic
pressure p(2) as a basic variable in the numerical approximation.
Without introducing multiple pressure variables semi-implicit schemes in di�erent formula-

tions have been proposed by several authors. Based on the fully conservative equations (1)
Patnaik et al. [4] solved for the conservative variables on a collocated grid. They discretized
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implicitly the pressure term in the momentum equation and the velocity in the energy equa-
tion. Casulli and Greenspan [3] solved the system in primitive variables on a staggered grid
arrangement, but treated explicitly all the pressure terms and implicitly only the divergence
of velocity. With their characteristic analysis they proved that it does not e�ect the stability
properties. In this case, the scheme is not strictly additive semi-implicit any more, but the
coupling between the velocity and pressure becomes linear and simple. Otherwise one cannot
avoid the expensive iterative solution process of a non-linear system of equations for the
pressure. Munz et al. [11] proposed an iterative SIMPLE-type method based on the primitive
variables and using multiple pressure variables. With a rescaling of the pressure for low Mach
numbers Wesseling and his co-workers used all the three di�erent formulations subsequently
in the papers [5–7].
In the conservative formulation for the simplest EULER time-integration case we get the

following fully discretized form:

%n+1 − %n
�t

+ [∇̃ · (%u)]n =0

(%u)n+1 − (%u)n
�t

+ [∇̃ · (%u ◦ u)]n =−∇̃p(2)n+1

[M 2p(2) + (�− 1)M 2ek]n+1 − [M 2p(2) + (�− 1)M 2ek]n

�t

+(�− 1)M 2[∇̃ · (eku)]n= − ∇̃ · (�peun+1)− p(0)n+1 − p(0)n
�t

The pressure pe denotes the explicit approximation of the pressure pn+1 at the new time level.
One can certainly use the linear extrapolation of the previous pressures. But choosing pn as pe

is su�cient for the �rst-order time-integration case. The explicit density-, momentum- and
kinetic energy �ux terms due to the convection are denoted by C%, Cm and Ck . Rearranging
the above equations, we get

%n+1 = %n −�t ·C%

(%u)n+1 +�t∇̃p(2)n+1 = (%u)n −�t ·Cm

M 2p(2)
n+1
+�t∇̃ · (�peun+1) =M 2p(2)

n − dp(0)n

−(�− 1)M 2[en+1k − enk +�t ·Ck]

The solution procedure is now the following. At �rst the density is calculated using the
continuity equation in a fully explicit manner. The velocity and pressure are obtained with a
predictor–corrector algorithm similar to a fractional step or projection method [1, 14] for the
incompressible case.
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In the predictor step the tentative velocity u∗ is evaluated using the momentum equation
with the guessed pressure p(2)∗. Then these tentative values are corrected in the corrector step
to satisfy the pressure equation, too. Therefore the following corrector relations are de�ned:

un+1 = u∗ + �u

p(2)
n+1
=p(2)

∗
+ �p(2)

pn+1 =p(0)
n+1
+M 2p(2)

n+1

=p(0)
n
+ dp(0)

n
+M 2p(2)

∗
+M 2�p(2)

(20)

where �(·) denotes the correction of the corresponding physical value. The temporal change
of the thermodynamic pressure dp(0)n for the incompressible case acts as a predictor

dp(0)
n
= − �t · �p(0)n

|�|
∫
�
un · n d� (21)

From the momentum equation we obtain the relation between the velocity- and the pressure
correction

%n+1�u= −�t · ∇̃�p(2) (22)

To linearize the pressure equation, we evaluate explicitly the kinetic energy at the new time
level with the tentative velocity (e∗k =

1
2%
n+1u∗ · u∗)

M 2p(2)
n+1
+�t∇̃ · (�peun+1) =M 2p(2)

n − dp(0)n

− (�− 1)M 2[e∗k − enk +�tCk] (23)

This treatment is allowed in the low Mach number regime, because the error amounts only
O(M 2). In the higher Mach number case, the explicit treatment causes no problems, because
in this regime the time steps should be chosen according to the sound velocity CFL-condition
due to the accuracy reason in the unsteady case.
By substituting the ansatz (20) and the correction relation (22) into the pressure equation

(23), we get the so-called pressure correction equation

M 2�p(2) −�t2∇̃ ·
[
�pe

%n+1
∇̃�p(2)

]
=M 2[p(2)

n − p(2)∗]− dp(0)n

−�t∇̃ · (�peu∗)− (�− 1)M 2�k∗ (24)

with

�k∗= e∗k − enk +�tCk
For the incompressible limit case (M =0) with constant density and without outer compression
(dp(0) = 0), this reduces to the classical Poisson equation of the pressure correction �p(2). In
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this case our corrector step is identical with a projection method for the incompressible case.
Thus the proposed MPV fractional step method can be interpreted as an extension of the
traditional incompressible projection (or fractional step) method to all Mach number �ows.
In the actual simulation we decompose the total pressure p into two parts, i.e. the ther-

modynamic mean pressure p(0) and the hydrodynamic pressure p(2), but only once at the
initial phase. Then at each time step we guess the temporal change of the thermodynamic
mean pressure dp(0)n from Equation (21) and using the pressure correction equation (24)

we get the hydrodynamic pressure p(2)n+1. But the mean value of the pressure p(2)n+1 does
not in general disappear, so it is favourable to update the pressure decomposition and cor-

rect the mean pressure p(0)n+1 at the end of each time step (p(2)n+1 ⇐p(2)n+1 − p(2)n+1,

p(0)n+1 ⇐p(0)n+1+M 2p(2)n+1). Otherwise the consistency between the di�erent pressure terms
is lost.
We brie�y summarize our overall solution procedure:

1. At the initial phase the pressure must be decomposed according to the MPV ansatz (7).
2. At each time step �rst all the convective transport terms C%; Cm; Ck are calculated ex-
plicitly using the values at the old time level.

3. The density is calculated explicitly in time at the new time level.
4. The temporal change of the thermodynamic mean pressure dp(0)n is calculated according
to (21).

5. A guess p(2)∗ of the pressure is used to evaluate the tentative velocity u∗ using the
momentum equation.

6. The linearized pressure correction equation (24) is solved.
7. All the �ow properties at the new time level (·)n+1 are evaluated according to relations
(20).

8. For the compressible case the mean temporal change of p(2)n+1 must be subtracted from
the incompressible pressure and added to the thermodynamic mean pressure p(0)n+1.

9. Go to the next time step.

For the primitive- and semi-conservative form we use a similar semi-implicit time-integration
scheme and the same solution procedure. The di�erences lie in the pressure correction equa-
tions only. For the di�erent approaches the following equations are obtained:
Pressure correction equation for the semi-conservative form

M 2�p(2) −�t2∇̃ ·
[
pe

%n+1
∇̃�p(2)

]
−�t2(�− 1)pe∇̃ ·

[
∇̃�p(2)
%n+1

]

= M 2[p(2)
n − p(2)∗]− dp(0)n −�t∇̃ · (peu∗)−�t(�− 1)pe∇̃ · u∗ (25)

Pressure correction equation for the primitive form:

M 2�p(2) −�t2�pe∇̃ ·
[

∇̃�p(2)
%n

]
=M 2[p(2)

n − p(2)∗]− dp(0)n

−�t�pe∇̃ · u∗ (26)
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4. SPATIAL DISCRETIZATION

So far we considered the time approximation only and described the overall solution procedure.
The approximation in space was not speci�ed and several approximations may be applied. In
the following we brie�y discuss a simple spatial discretization based on a di�erence method.
This approximation is based on a staggered grid arrangement, which was �rst introduced by
Harlow and Welch [15] to compute incompressible �ows. In this scheme scalar variables
are de�ned at the cell centres, velocities at the cell boundaries. This is attractive for the
incompressible �ow, because a stable pressure–velocity coupling is established and no arti�cial
terms are needed to avoid spurious pressure oscillations [16]. Whereas all the derivatives in
the implicit part are approximated centrally, the convective transport terms in the explicit part
are treated with upwind di�erences. As an example for upwinding, the density �ux in ith cell
is discretized by

1
�x
[(%u)i+1=2 − (%u)i−1=2] (27)

with

(%u)i+1=2 = ui+1=2 ·
{
%i;+ for ui+1=2 ¿ 0

%i+1;− for ui+1=2 ¡ 0
(28)

Several methods for the left- (+) or right (−) interpolation of the density at the cell boundaries
i + 1

2 were developed in the last twenty years and are found in literature. Simply inserting
%i for %i;+ and %i+1 for %i+1;− we can obtain only �rst-order in space. Using the piecewise
linear interpolation, which originates from van Leer’s MUSCL scheme [17], the second-order
in space for smooth solutions is achieved

%i;+ = %i +
�x
2
S%i (29)

where S%i represents the slope of density in ith grid zone. More details about the properties
of this slope one can be found in Reference [18].
Because of the grid staggering we need additional interpolations for the density at cell

boundaries in the momentum equation and the velocity at cell centres in the density- and
pressure-transport terms. We use the second-order central interpolation for them

%i+1=2 = 0:5(%i + %i+1)

ui =0:5(ui−1=2 + ui+1=2)

for the equidistant case. The spatially discretized pressure correction equation results in a
linear algebraic system of equations for �p(2). This can be written as a simple tridiagonal
system for the one-dimensional case and in general as a system with band matrix for the
multi-dimensional case. For equidistant grids it is a symmetric system. As a solver we use
CG-type methods with preconditioning.
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5. SECOND-ORDER SEMI-IMPLICIT TIME-INTEGRATION

Up to now we have introduced only the simplest semi-implicit Euler method for the time-
integration. For practical unsteady calculations second-order semi-implicit methods are neces-
sary to increase the e�ciency. The semi-discretization approach or method of lines leads to
the �rst-order ordinary di�erential equations,

d�
dt
= f(�n) + g(�n+1) (30)

where � is the vector of discretized �ow �eld variables. Whereas f is the vector resulting
from the spatial discretization of the non-sti� terms, g results from the sti� terms. Hence in
the simulation f is approximated explicitly and g implicitly.
For such a strict additive semi-implicit time-integration, some one-step- and multistep meth-

ods with higher-order accuracy in time have been developed by several authors. Here we use
the typical second-order methods, RK2CN- and SBDF method. In the following we apply
these algorithms to our basic equations:
Euler method:

�n+1 =�n +�t[f(�n) + g(�n+1)] (31)

We have discussed this method in detail in the previous section. It is very simple, but we
can achieve only �rst-order in time.
RK2CN method:

�n+1=2 =�n +
�t
2
[f(�n) + g(�n+1=2)]

�n+1 =�n +�tf(�n+1=2) + �t[ 12g(�
n) + 1

2g(�
n+1)]

(32)

The name RK2CN originates from the second-order Runge–Kutta method (midpoint rule) for
the explicit term and the trapezoidal method (or Crank–Nicolson) for the implicit term. At
the �rst stage �ow variables at the half time-level are evaluated with the EULER method. Then
these values are used for the explicit term at the second stage. For the implicit term the
Crank–Nicolson scheme is applied. With this method we can achieve second-order in time.
Unfortunately RK2CN method is only A-stable, but not strong A-stable (i.e. L-stable). With
this method we observed di�culties with stability for nearly incompressible �ows. In this
regime one must treat the sti� terms fully implicitly.

SBDF method:
One of the most popular implicit multistep methods for sti� problems is the second-order
backward di�erentiation formula (BDF) method, which is given, for the case of equidistant
time steps, by

3�n+1 − 4�n +�n−1 = 2�t[f(�n+1) + g(�n+1)]
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The SBDF (semi-implicit or extrapolated BDF) method is extended from the above classical
two-step BDF method. For the non-sti� part one uses simple explicit linear extrapolation with
time step ratio q

f(�n+1)= (1 + q)f(�n)− qf(�n−1); q=
tn+1 − tn
tn − tn−1

Then we get the following SBDF2 formula:

�n+1 =
1

1 + 2q
[(1 + q)2�n − q2�n−1]

+
(1 + q)�t
1 + 2q

[(1 + q)f(�n)− qf(�n−1) + g(�n+1)] (33)

The stability criteria for this method was analysed by Frank et al. [19].
Besides the above semi-implicit time-integration methods, some other second- or higher-

order methods, i.e. ABCN method [20] as a two-step method or RK3CN- [21], UCS2- [22],
ASIRK method [23] as a one-step method, are known in literature.
The splitting of the sti� and non-sti� terms into two subsystems leads to the problem of

the de�nition of appropriate boundary values in both steps, especially in the non-physical
intermediate step. We did not run into any di�culty for the problems numerically solved
with the following procedure. All the terms that are explicitly approximated in the �rst step
are connected with the �uid transport only and the corresponding system of evolution equa-
tions remains hyperbolic in the incompressible limit. To impose the boundary conditions we
introduced dummy or �ctitious grid cells. Appropriate values in the dummy grid cells are
de�ned according to the physical situation and mathematical character of the equations. The
initial data in the dummy grid cell are speci�ed such that the proper values at the boundary
are generated. We de�ned, e.g. for a �xed wall, the values in the dummy grid zones to be
the same with respect to the interior domain for density, pressure, tangential velocity and
anti-symmetric for the normal velocity component. This speci�cation introduces a re�ection
of the convective motion at the wall. The technique used is quite common for the �nite
volume schemes. Here, the numerical �ux at the boundaries is directly determined by the
exact or approximate solution of these local initial value problems. In the second step all the
physical boundary conditions are speci�ed. Here, it is favourable to de�ne the starting values
of the pressure iteration for pressure and velocity such that they already satisfy the proper
boundary conditions. Then for the pressure correction homogenous Dirichlet conditions may
be prescribed.

6. NUMERICAL TESTS

The MPV-scheme for the basic equations in the primitive form was considered in
Reference [16] using the implicit Euler method for time integration. There the well-known
benchmark problem of the lid-driven cavity has been considered. The numerical results using
the di�erent formulations of the basic equations were almost the same. Hence, we will not
show these results here. Di�erences between the results of the di�erent formulations we would
expect for larger Mach numbers, especially in the vicinity of shock waves.
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The typical simple benchmark problems in the high Mach number regime are Riemann
problems, for which exact solutions are available. In the solution of the Riemann problem
shocks, contact discontinuities and expansion waves may occur. To simulate this �ow structure
correctly, numerical schemes must converge to weak solution. This means that an entropy
condition must be satis�ed, which rules out expansion shocks and that the numerical jump
condition across the shock must be identical to the exact one. Otherwise the shock speed may
be incorrect and may depend on the discretization parameters. For the time step condition we
use the usual CFL-condition for an explicit method with the �xed Courant number �=0:4.
For the solution of a Riemann problem this is a natural restriction for the accuracy. For the
time-integration we apply the RK2CN method. As the slope parameter in the MUSCL scheme
we choose k=1:0, i.e. minmod function, because this slope calculation is quite robust and
may suppress the oscillations at strong gradients. To validate the proposed methods in the
low Mach number case we simulate the problem of two colliding pulses at the global Mach
number M ≈ 0:1 and the interaction of a density-layering with a long wavelength acoustic
wave at M ≈ 0:02. Here we use the time step condition (18) with respect to the �ow velocity.
For these test cases we also verify the convergence rates.

6.1. The shock tube problem of Sod

If the initial states are quiescent (ul= ur =0), then the Riemann problem is also called a
shock tube problem. The initial conditions for Sod’s shock tube problem [24] are

M =1; (%l; ul; pl)= (1; 0; 1); (%r; ur ; pr)= (0:125; 0; 0:1) (34)

In the simulation we use 100 equidistant grid cells, �x=0:01. The maximal velocity in the
�ow amounts |u|max ≈ 0:927 and the maximal wave speed is (|u|+ c)max =2:2.
In Figure 1 the density- , velocity-, pressure- and Mach number distributions for the three

di�erent forms of the basic equations are compared with the exact solutions. The results
obtained from the primitive form are not acceptable. The shock speed is wrong and the con-
stant values for the velocity and the pressure behind the shock wave clearly show deviations.
For the semi-conservative formulation the results are much better. They are quite similar to
those of the conservative formulation. They produce the proper shock speed and the overall
deviation from the exact solution is small.

6.2. Test case of Lax

The initial state [25] is speci�ed by

M =1; (%l; ul; pl)= (0:445; 0:698; 3:528); (%r; ur ; pr)= (0:5; 0; 0:571) (35)

As in the previous simulation we use 100 equidistant grid cells, �x=0:02. In this test case the
shock and contact discontinuity are stronger than in Sod’s shock tube problem. The maximal
velocity in the �ow amounts |u|max ≈ 1:529 and the maximal wave speed (|u| + c)max =4:7.
As in the test case of Sod the results based on the primitive form are not acceptable, they
show wrong constant states and wrong shock velocity. The results of the semi-conservative
form and the conservative form now show stronger deviations. Especially the deviation in the
density pro�le is quite obvious. The conservative form shows the correct behaviour (Figure 2).
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Figure 1. Sod’s shock problem with at t=0:2, �: primitive form, O: conservative form,
©: semi-conservative form, dotted line: exact solution.

6.3. The blast wave problem of Woodward–Collela

This test case is the left half of the blast wave problem of Woodward and Collela [26], that
is one of the severest test cases. Like in the previous test cases the solution consists of a left-
running rarefaction wave and a right-running shock wave followed by a contact discontinuity.
The initial conditions are given by

M =1; (%l; ul; pl)= (1; 0; 1000); (%r; ur ; pr)= (1; 0; 0:01) (36)

We use 200 equidistant grid cells, �x=0:01. The maximal velocity in the �ow amounts
|u|max ≈ 19:6. Now the �ow is supersonic in some region and the maximal Mach number
reaches up to Mloc ≈ 1:89. In this test case with such a strong pressure jump, the semi-
conservative form shows its limits and produces non-reasonable results. As expected, for
strong shock waves the conservative form of the governing equations is important to obtain
good results. The numerical damping especially at the contact surface becomes clearly visible.
For a better numerical resolution one needs �ner grids.
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Figure 2. Lax’s shock problem at t=0:32, �: primitive form, O: conservative form,
©: semi-conservative form, dotted line: exact solution.

The numerical results for the Riemann problem with moderate and strong shock waves
indicate that the MPV-scheme based on the primitive variables is not able to capture a dis-
continuity in an appropriate way. The semi-conservative formulation produces still good results
for moderate shock waves but run into trouble with the strong ones. In the case of strong
discontinuities only the formulation in the conservative form produced acceptable results. The
numerical experiments indicate that the shock speeds are reproduced very well. Due to the
upwind di�erencing of the convection terms the scheme did not generate spurious oscillations
at the discontinuities. Although the formulation of the numerical scheme is not the usual �nite
volume formulation by which the integral conservation property is automatically ful�lled, all
the numerical results indicate that the use of the governing equations within our framework
establishes the proper conditions at discontinuities. This is due to the fact that all the terms
are approximated as �uxes on the staggered grid. The primary variables that are used in the
pressure iteration is the pressure term p(2) and the velocity, but these variables are inserted
into the �uxes of the conservative equations. The numerical dissipation introduced by the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:905–931



922 J. H. PARK AND C.-D. MUNZ

X

R
H

O

-1 -0.5 0 0.5 1
0

1

2

3

4

5

6

7

8

9

X

U

-1 -0.5 0 0.5 1
0

5

10

15

20

25

X

P

-1 -0.5 0 0.5 1
0

100

200

300

400

500

600

700

800

900

1000

X

M
a

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

Figure 3. Woodward–Collela’s problem with RK2CN method at t=0:024, �: primitive form, O: conser-
vative form, ©: semi-conservative form, dotted line: exact solution.

upwind di�erencing of the convection terms, the central di�erencing of the pressure terms in
combination with the implicit time approximation, and the averaging on the staggered grid
seem to stabilize the calculation in such a way that the shock-capturing property is established
(Figure 3).

6.4. Two colliding pulses

Next we show numerical results for the problem of two colliding pulses in a weak compress-
ible regime (M = 1

11). The initial data as proposed in Reference [10] are

%(x; 0) = 	%0 +M%̃
(1)
0 · 12 (1:0− cos(2�x=L))

p(x; 0) = 	p0 +Mp̃
(1)
0 · 12 (1:0− cos(2�x=L))

u(x; 0) = sign(x) · ũ0 · 12 (1:0− cos(2�x=L))
(37)
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for −L6x6L= 2
M , where

	%0 = 0:955; 	p0 = 1:0

and

%̃ (1)0 = 2:0; p̃ (1)0 = 2�; ũ0 = 2
√
�

These initial data generate two pulses, one right running pulse in −L6x60, and an antisym-
metric left-running pulse in 06x6L. We prescribe periodic boundary conditions and use 400
equidistant grid cells with �x=0:1. We choose the slope parameter in the MUSCL scheme
k=1:4, because no discontinuities exist in this a low Mach number regime. This problem was
calculated by Klein [10] using a �nite volume method modi�ed for the low Mach number
regime.
Figure 4 shows the pressure distribution at t=0:815 and 1:63. The initial distribution is

given as a dotted line. At t=0:815 both pulses collide with each other and their superposition
produces the maximal pressure. In the right �gure both pulses separate again. Because of the
weakly non-linear e�ects the front of the pulses steepens up considerably. The methods based
on the three di�erent forms show nearly identical results.
Now we test the convergence rate with di�erent time step sizes with a �xed spatial grid.

The time step size �t is reduced successively with factor two (�t=�x=2n; n=2 : : : 12).
We have no exact solutions for this test case, thus the solutions with the smallest time step
size are taken as reference solution. With respect to these reference solution we evaluate the
so-called normalized error [27]

Normalized Error=

√

|�−�ref |2√

|�ref |2

(38)
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Figure 4. Pressure distribution of colliding acoustic pulses with RK2CN method at
t=0:815 (left), t=1:63 (right), �: primitive form, O: conservative form, ©: semi-

conservative form, dotted lines: initial distribution.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:905–931



924 J. H. PARK AND C.-D. MUNZ

∆t

N
o

rm
al

iz
ed

 E
rr

o
r 

(L
2)

10-5 10-4 10-3 10-2 10-1
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

2nd-order
usbdf2

 sbdf2

psbdf2

urk2cn

 rk2cn

prk2cn

∆tc ∆tu

ρ

ρ

Figure 5. Convergence test of the colliding acoustic pulses at t=1:63, �: velocity,
O: density, ©: pressure, solid lines: SBDF2 method, dotted lines: RK2CN method,

thick line: slope of the second-order.

Figure 5 shows the results of the SBDF2- and RK2CN method with a logarithmic scale.
Here, �tu is the maximal allowed time step size with respect to the CFL-condition for the
�ow velocity and �tc the time step size with respect to the normal CFL-condition for the
speed of sound. Both methods achieve second-order in time for all variables and in all ranges.
The error of the SBDF2 method is in general larger than that of the RK2CN method.

6.5. Density-layering problem

The initial data for this test case [10] are speci�ed by

%(x; 0) = 	%0 + �(x)%̃
(0)
0 sin(40�x=L) +M%̃ (1)0 · 0:5 · (1:0 + cos(�x=L))

p(x; 0) = 	p0 +Mp̃
(1)
0 · 0:5 · (1:0 + cos(�x=L))

u(x; 0) = ũ0 · 0:5 · (1:0 + cos(�x=L))

(39)

for M = 1
51 , −L6x6L=1=M , with density coe�cients

	%0 = 1:0; 	p0 = 1:0
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and the parameters

%̃ (1)0 = 0:5; p̃ (1)0 = 2�; ũ0 = 2
√
�

The function �(x) is de�ned by

�(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 −1=L6x60

0:5(1:0− cos(5�x=L)) 06x62L=5

0 x ¿ 2L=5

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
which smoothly limits the large amplitude short wavelength density �uctuations represented
by %̃ (0). This test case operates with periodic boundary conditions too.
Above data represent a large amplitude, short wavelength density layering that is set in

motion by a periodic train of long wavelength right-running pulses. The key aspect of this
example is the advection of the density pro�le due to the recurring interaction with the back-
ground pulse. For this test case we choose a �ne grid with 1020 grid points, i.e. �x=0:1
and the slope parameter k=1:4 to resolve the small scale structures. Figure 6 shows the
initial data in addition to the pro�les at the later time t=5:071 for the conservative form.
By this time, the pressure pulse has passed the density layering two and a half times. Due to
the weakly non-linearity of the pulse a considerable steepening of the pressure and velocity
distribution is visible. The density �uctuation amplitude is preserved during the advection.
The methods with other forms of the basic equations show the same quality in their solu-
tions.
Similar to the previous test case we investigate the convergence rate. Figure 7 shows

the results. There is a strong order reduction for all the solutions with the time step size
between �tc and �tu. In this region the scheme can fully resolve the long wavelength right-
running background pulse, but not su�ciently the acoustic perturbation waves, that arise due
to interactions between the background pulse and the initial large amplitude short wavelength
density �uctuations. Only after the complete resolution of these acoustic e�ects with time step
size smaller than �tc, the proper convergence rate can be recovered again. Acoustic waves
that appear in the weak compressible regime require su�cient small timesteps to capture their
non-stationary behaviour.

6.6. Vorticity generation in low Mach number �ows

This test case shows the vorticity generation in the low Mach number regime due to the
interaction between the longwave acoustic pressure pulse and the small scale �ow structures.
Following initial data are given [28]:

%(x; y; 0) = 	%0 +M%̃
(1)
0 · 0:5 · (1:0 + cos(�x=L)) + �(y)

p(x; y; 0) = 	p0 +Mp̃
(1)
0 · 0:5 · (1:0 + cos(�x=L))

u(x; y; 0) = ũ0 · 0:5 · (1:0 + cos(�x=L))
v(x; y; 0) = 0:0

(40)
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Figure 6. Density layering problem of Klein approximated with MPV-RK2CN method, dotted line: initial
distributions; solid line: t=5:071 for the conservative form.

for the Mach number M =0:05 in the area −L6x6L=1=M , 06y6Ly=2L=5 with the
constant values

	%0 = 1:0; 	p0 = 1:0

and

%̃ (1)0 = 0:4; p̃(1)0 = 2�; ũ0 = 2
√
�

The function �(y) is de�ned as

�(y)=

⎧⎪⎪⎨⎪⎪⎩
2%̃ (1)0

y
Ly
; 06y6Ly=2

2%̃ (1)0

(
y
Ly

− 1
)
; Ly=26y6Ly
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Figure 7. Convergence test of the density-layering problem at t=5:071, �: velocity, O:
density, ©: pressure, solid lines: MPV-SBDF2 method, dotted lines: MPV-RK2CN method,

thick line: slope of the second-order.

This represents a saw-tooth shaped density layering with the jump from %=1:4 to 0.6 in the
y-direction. Our data describe a long wavelength periodic acoustic pulse with the amplitude
�M , which runs over above the saw-tooth shaped density layering in the x-direction and
sets it in motion. With the equidistant grid 400× 80 the simulation was performed under the
double periodic boundary conditions. We apply the SBDF2 method for the time-integration
and MUSCL scheme with the slope parameter �=1:4.
At the initial state the �ow is rotation-free. The �uid particles with di�erent density near the

interface are accelerated di�erently by the acoustic pressure pulse. Then the rotational motions
arise slowly along the interface. These lead to the so-called Kelvin–Helmholtz instability. The
long wavelength sinusoidal layer develops and continues to move in x-direction due to the
driving long wavelength acoustic pulse. The sinusoidal density layer becomes itself unstable,
especially on the �anks of the layer due to the strong density gradient. Then small rotational
structures develop and grow very quickly. This example clearly demonstrates that the long
wavelength acoustic pulse feed energy to the small space scale �ow structures leading to the
generation of vortices. Figure 8 shows the contour lines of density at the several developing
phases of vortices. These results are obtained from the method based on the conservative
form.
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Figure 8. Vorticity generation due to the interaction between the long wavelength acous-
tic pressure pulse and the small scale �ow structures at time t=0; 7; 10, 13, 16, 19 for

M =0:05. Contourlines of the density:= 0:65; 0:7; : : : ; 1:45:
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7. CONCLUSIONS

In this paper we investigated a pressure based method for the simulation of unsteady �ows. The
basic equations of compressible �uid dynamics are formulated in a primitive-, conservative-
and semi-conservative form. The numerical method uses a staggered grid arrangement in
space. As a time-integration we use a semi-implicit method, which treats only the acoustic
terms implicitly, because the acoustic waves in the low Mach number regime are much faster
than the �ow velocity. Thus the stability condition of the overall algorithm is independent
of the Mach number. Additionally we adopt the so-called MPV approach, which enables us
to simulate compressible as well as incompressible �ows. The decomposition of the pressure
in a thermodynamic and a hydrodynamic part avoids the accuracy problems at low Mach
numbers. As expected acceptable results for high Mach number �ows are obtained only with
the conservative form. For the low Mach number case the numerical solutions obtained by the
primitive, semi-conservative and conservative forms of the basic equations converge to the
correct solutions and their solutions show comparably the same qualities. The second-order
semi-implicit time-integration methods is an important improvement to enhance the e�ciency
for unsteady problems.
Our conclusion is that the conservative MPV fractional step method, that is an extension

of the incompressible projection (or fractional step) method, shows a good behaviour within
the whole Mach number regime. The shock-capturing property is established by the use of
the conservative equations. All the terms are approximated as numerical �uxes. The primary
variables used in the pressure correction cycle are still the pressure and the velocity, but these
values are inserted into the �uxes of the conservative formulation. The upwind di�erencing of
the convection terms, the central di�erencing of the pressure terms in combination with the
implicit time approximation, and the averaging on the staggered grid stabilize the scheme in
the vicinity of discontinuities. The main �elds of application of this technique are unsteady
problems where in one region compressible and in another weakly compressible or even
incompressible �uid �ow occur. The version with the �rst-order time approximation behaves
well for the simulation of steady problems. Looking for an unsteady solution of a problem in
the fully compressible regime the implicit treatment is usually not necessary. Under such �ow
conditions an explicit �nite volume shock-capturing scheme should need less computational
e�ort. The explicit �nite volume schemes run into the sti�ness and accuracy problem within
low Mach number regions. The so-called preconditioning methods that arti�cially reduce the
speed of the acoustic waves may help to obtain stationary solutions. For unsteady problems
a dual time-stepping has then to be introduced. Here, we expect that the MPV approach with
the time accurate implicit treatment of the sti� terms will be more e�cient.
All the results presented were for the inviscid equations. The extension to the Navier–

Stokes equations is straightforward. The asymptotics may be extended to this case (see
Reference [10]). The numerical scheme has then to be constructed in such a way that it
converges to the M =0 equations with heat conduction. In this case the evolution equation
for the thermodynamic pressure contains the surface integral of the heat �ux through the
boundary. The thermodynamic background pressure may change in time. The other modi�-
cation is that the heat conduction appears in the energy equation. The pressure correction
equation becomes more complicated, because the heat �ux depends on the temperature gradi-
ent that is determined by the caloric equation of state. This coupling has to be introduced into
the iteration procedure. In the primitive formulation of the governing equations this has been
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performed in Reference [11] and validated for the heat driven cavity with vertically heated
walls. The temperature di�erences in this example were 150◦, while the Mach number was
still about 0.0005 with clear di�erences to results with the Boussinesq approximation.
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